메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이여진 (부경대학교) 박한훈 (부경대학교)
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제24권 제1호
발행연도
2023.3
수록면
21 - 26 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
지식 증류는 깊은 모델의 지식을 가벼운 모델로 전달하는 모델 경량화 기술이다. 대부분의 지식 증류 방법들은 분류 모델을 위해 개발되었으며, 초해상화를 위한 지식 증류 연구는 거의 없었다. 본 논문에서는 다양한 지식 증류 방법들을 초해상화 모델에 적용하고 성능을 비교한다. 구체적으로, 초해상화 모델에 각 지식 증류 방법을 적용하기 위해 손실 함수를 수정하고, 각 지식 증류 방법을 사용하여 교사 모델을 약 27배 경량화한 학생 모델을 학습하여 2배 초해상화하는 실험을 진행하였다. 실험을 통해, 일부 지식 증류 방법은 초해상화 모델에 적용할 경우 유효하지 않음을 알 수 있었으며, 관계 기반 지식 증류 방법과 전통적인 지식 증류 방법을 결합했을 때 성능이 가장 높은 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0