메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손연경 (부산대학교) 신예원 (광주과학기술원) 권선영 (부산대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.2
발행연도
2024.2
수록면
157 - 164 (8page)
DOI
10.5626/JOK.2024.51.2.157

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인공지능의 발전과 함께 설명 가능한 인공지능의 필요성이 점점 커지고 있다. 최근에는 그래프 신경망 기반의 설명 가능한 인공지능 연구도 활발히 진행되고 있으나, 주로 일반적인 그래프에 초점을 두고 있다. 분자 그래프의 화학적 특성에 의존하는 특징 때문에, 현존하는 기법이 분자 그래프에서도 설명력을 제공할 수 있는지 파악하는 연구의 필요성을 강조한다. 본 논문에서는 분자 그래프에 기존의 기술을 적용하고, 이를 정량적 및 정성적으로 평가하여 설명력을 확인하였다. 더불어 중요한 특성의 비율을 통일한 후의 결과도 검토하여, 설명 가능한 인공지능의 평가 지표 중 하나인 희소성의 중요성을 강조하였다.

목차

요약
Abstract
1. 서론
2. 배경
3. 실험
4. 실험 결과
5. 희소성에 따른 실험 결과
6. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089391420