메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤의현 (국민대학교) 이현종 (국민대학교) 김동건 (한화시스템) 박주찬 (한화시스템) 김진규 (고려대학교  ) 이재구 (국민대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.7
발행연도
2024.7
수록면
609 - 619 (11page)
DOI
10.5626/JOK.2024.51.7.609

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근, 교사 학습 기반의 인공지능 분야가 급속도로 발전하고 있다. 그러나 교사 학습은 정답 값이 지정된 데이터집합에 의존하기 때문에, 정답 값을 확보하기 위한 비용이 커진다. 이러한 문제점을 해결하기 위해 정답 값없이 사진의 일반적인 특징을 학습할 수 있는 자기 교사 학습(Self-supervised learning)이 연구되고 있다. 본 논문에서는 다양한 자기 교사 학습 모델을 학습 방식과 백본 네트워크 기준으로 분류하고, 각 모델의 장단점, 성능을 비교 분석하였다. 성능 비교를 위해 사진 분류 작업을 사용하였다. 또한 전이 학습의 성능을 비교하기 위해 세밀한 예측 과업의 성능 또한 비교 분석하였다. 그 결과, 긍정적 쌍만 사용하는 모델이 노이즈를 최소화하여 부정적인 쌍을 같이 사용하는 모델들보다 높은 성능을 달성하였다. 또한 세밀한 예측의 경우 이미지를 마스킹하여 학습하거나 멀티스테이지 모델 등을 활용하여 지역적인 정보를 추가로 학습하는 방식이 더욱 높은 성능을 달성한 것을 확인하였다.

목차

요약
Abstract
1. 서론
2. 대표적인 자기 교사 학습 모델
3. 실험 및 분석
4. 논의 및 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0