메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이규범 (과학기술연합대학원대학교, 한국건설기술연구원) 신휴성 (한국건설기술연구원)
저널정보
한국터널지하공간학회 한국터널지하공간학회 논문집 한국터널지하공간학회 논문집 제26권 제2호
발행연도
2024.3
수록면
129 - 152 (24page)
DOI
https://doi.org/10.9711/KTAJ.2024.26.2.129

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
터널 내 CCTV를 통한 딥러닝 객체인식 적용에 있어서 터널의 열악한 환경조건, 즉 낮은 조도 및 심한 원근현상으로 인해 오탐지가 대량 발생한다. 이 문제는 객체인식 성능에 기반한 영상유고시스템의 신뢰성 문제로 직결되므로 정탐지 향상과 더불어 오탐지의 저감 방안이 더욱 필요한 상황이다. 이에 본 논문은 딥러닝 객체인식 모델을 기반으로, 오탐지 데이터의 재학습을 통해 오탐지의 저감뿐만 아니라 정탐지 성능 향상도 함께 추구하는 오탐지 학습법을 제안한다. 본 논문 의 오탐지 학습법은 객체인식 단계를 기반으로 진행되며, 학습용 데이터셋 초기학습 - 검증용 데이터셋 추론 - 오탐지 데이터 정정 및 데이터셋 구성 - 학습용 데이터셋에 추가 후 재학습으로 이어진다. 본 논문은 이에 대한 성능을 검증하기 위해 실험을 진행하였으며, 우선 선행 실험을 통해 본 실험에 적용할 딥러닝 객체인식 모델의 최적 하이퍼파라미터를 결정하였다. 그리고 본 실험에서는 학습영상 포맷을 결정하기 위한 실험, 반복적인 오탐지 데이터셋의 재학습을 통해 장기적인 성능향상을 확인하기 위한 실험을 순차적으로 진행하였다. 그 결과, 첫 번째 본 실험에서는 추론된 영상 내에서 객체를 제외한 배경을 제거시키는 경우보다 배경을 포함시키는 경우가 객체인식 성능에 유리한 것으로 나타났으며, 두 번째본 실험에서는 재학습 차수별 독립적으로 오탐지 데이터를 재학습시키는 경우보다 차수마다 발생하는 오탐지 데이터를 누적시켜 재학습 시키는 경우가 지속적인 객체인식 성능 향상 측면에서 유리한 것으로 나타났다. 두 실험을 통해 결정된 방법으로 오탐지 데이터 재학습을 진행한 결과, 차량 객체 클래스는 1차 재학습 이후부터 AP값이 0.95 이상 우수한 추론 성능이 발현되었으며, 5차 재학습까지 초기 추론 대비 약 1.06배 추론성능이 향상되었다. 보행자 객체 클래스는 재학습 이 진행됨에 따라 지속적으로 추론 성능이 향상되었으며, 18차 재학습까지 초기 추론대비 2.3배 이상 추론성능이 자가 향상될 수 있음을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0