메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A particle filter is one of the most famous filters. The reason why the particle filter is widely used is that particle filter deals with the state estimation problem for not only linear models with Gaussian noise but also the non-linear models with non-Gaussian noise and it receives great attention from many engineering fields.1n the point of view state estimator, particle filter is feedforward observer. According to the characteristic of dynamic system, the feedforward observer can estimate real state. However, the speed of convergence of feedforward observer between the actual state and the estimated state cannot be satisfied Since the particle filter is a sort of feedforward observer, the convergence speed of particle filter is slow. and the particle filter cannot estimate actual state like particle collapse problem.
In order to overcome the limitation of particle filter as a kind of feedforward estimator, we propose a new particle filter which has feedback term, called particle filter with feedback. Our proposed method is analyzed theoretically and studied by computer simulation. Comparisons are made with other filtering mehod.

목차

Abstract
1. INTRODUCTION
2. PARTICLE FILTER
3. PARTICLE FILTER WITH FEEDBACK
4. EXPERIMENTAL RESULT
5. CONCLUSION
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015035960