메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김대옥 (연세대학교) 홍종광 (연세대학교) 변혜란 (연세대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.41 No.9
발행연도
2014.9
수록면
666 - 673 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 비제약적 얼굴 데이터 베이스를 위한 확장성 있는 얼굴 인식 방법을 연구하고, 간단한 실험 결과를 소개한다. 기존의 얼굴 인식 연구들은 주로 조명, 얼굴 각도, 표정, 배경 등 제약이 있는 환경에서의 정확도 향상에 초점을 맞추고 있어서 비제약적 얼굴 데이터 베이스에 사용하기에 적합하지 않다. 제안하는 얼굴인식 방법은 비제약적 얼굴 인식을 위한 특징 추출 알고리즘으로, 먼저 지역적 특징이 존재하는 눈, 코, 입과 같이 얼굴의 중요한 특징을 나타내는 영역을 분리한다. 각 얼굴 주요 위치는 고차원의 다중 스케일 국부 이진패턴 히스토그램(Multi-scale LBP histogram) 특징 벡터로 기술된다. 단일 얼굴 주요 위치에 해당하는 다중 스케일 국부 이진패턴 히스토그램 특징 벡터는 주성분 분석법(PCA: Principal Component Analysis)과 선형 판별 분석법(LDA: Linear Discriminant Analysis)의 차원 축소과정을 통해 저차원 얼굴 특징 벡터를 생성한다. 저차원 얼굴 특징 벡터는 랭크 획득과 Precision at k(p@k) 성능 평가 방법을 이용하여 제안한 알고리즘의 얼굴 인식 성능을 검증한다. 본 연구는 FERET, LFW 및 PubFig83 데이터 베이스를 이용하여 얼굴 인식 실험을 수행하였으며, 제안한 알고리즘을 이용한 얼굴 인식 방법이 기존의 방법보다 향상된 인식성능을 보였다.

목차

요약
Abstract
1. 서론
2. 고차원 얼굴 특징 추출
3. 분리된 얼굴 주요 위치 별 특징 추출
4. 실험 및 분석
5. 결론 및 향후연구
References

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002591824