메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Taehoon Kim (국민대학교) Hyunchul Ahn (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제21권 제2호
발행연도
2015.6
수록면
173 - 190 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
부도는 막대한 사회적, 경제적 손실을 야기할 수 있으므로, 미리 부도여부를 정확하게 예측하여 선제 대응하는 것은 경영분야에서 대단히 중요한 의사결정문제 중 하나이다. 이에 지능정보시스템 분야에서도 그간 기업의 재무 데이터에 기반해 부도예측을 개선하기 위한 노력을 기울여왔는데, 안타깝게도 기존의 연구들은 대부분 분류모형의 성능 개선을 통해 예측 정확도를 개선하는 것에만 주로 초점을 맞추어 다른 요소들을 충분히 고려하지 못했다는 한계가 있다. 이러한 배경에서 본 연구는 부도예측모형의 정확도를 개선하기 위한 방편으로 새로운 데이터 전처리 방법, 그 중에서도 효과적인 표본추출방법을 제안하고자 한다. 일반적으로 부도예측을 위해 사용되는 데이터들은 극심한 데이터 불균형 문제에 노출되어 있는데, 본 연구에서는 k-reverse nearest neighbor(k-RNN)와 one-class support vector machine(OCSVM) 방법을 결합한 하이브리드 언더샘플링(hybrid under-sampling) 접근법을 통해 이같은 데이터 불균형 문제를 해결하고자 하였다. 본 연구에서 제안한 접근법에서 k-RNN은 이상치를 효과적으로 제거할 수 있으며, OCSVM은 다수를 구성하는 등급의 데이터로부터 정보량이 풍부한 표본만 효과적으로 선택할 수 있는 수단으로 활용될 수 있다. 제안된 기법의 성능을 검증하기 위해, 본 연구에서는 국내 한 은행의 비외감기업 부도예측모형 구축에 제안 기법을 적용해 본 뒤, 일반적으로 많이 사용되는 랜덤샘플링(random sampling)과 제안 기법의 성능을 비교해 보았다. 그 결과, 로지스틱 회귀분석, 판별분석, 의사결정나무, SVM 등 대다수의 분류모형에 있어 분류 정확도가 개선됨을 확인할 수 있었으며, 모든 분류모형에 있어 부정 오류, 즉 부실기업을 정상으로 예측하는 오류율이 크게 감소함을 확인할 수 있었다.

목차

1. Introduction
2. Literature Review
3. Proposed Approach
4. Empirical Validation
5. Conclusion
References
국문요약

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-003-001710290