메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nam-ok Jo (이화여자대학교) Hyun-jung Kim (이화여자대학교) Kyung-shik Shin (이화여자대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제21권 제3호
발행연도
2015.9
수록면
79 - 99 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
부도 예측은 회계와 재무 분야에서 꾸준히 연구되고 있는 분야이다. 초기에는 주로 다중판별분석(multiple discriminant analysis)와 로짓 분석(logit analysis)과 같은 통계적 방법을 이용하였으나, 1990년대 이후에는 경영 분야의 분류 문제를 위해 많은 연구자들이 인공신경망(back-propagation neural network), 사계기반추론(case-based reasoning), 서포트 벡터 머신(support vector machine) 등과 같은 인공지능을 통한 접근법을 이용하여 통계적 방법보다 분류 성과 측면에서 우수함을 입증해왔다. 기존의 기업의 부도에 관한 연구에서 많은 연구자들이 재무비율을 이용하여 부도 예측 모형을 구축하는 것에 초점을 맞추어왔다. 부도예측에 관한 연구가 꾸준히 진행되고 있는 반면, 부도의 세부적인 유형을 예측하여 제시하는 것에 대한 연구는 미흡한 실정이었다. 따라서 본 연구에서는 수익성, 안정성, 활동성 지표를 중심으로 국내 비외감 건설업 기업들의 부도 여부뿐만 아니라 부도의 세부적인 유형까지 예측 가능한 모형을 개발하고자 한다. 본 연구에서는 부도 유형을 예측하기 위해 두 개의 인공신경망 모형을 결합한 하이브리드 접근법을 제안하였다. 첫 번째 인공신경망 모형은 부도예측을 위한 역전파 인공신경망을 이용한 모형이며, 두 번째 인공신경망 모형은 부도 데이터를 몇 개의 유형으로 분류하는 자기조직화지도(self-organizing map)을 이용한 모형이다. 실험 결과를 통해 정의된 5개의 부도 유형인 심각한 부도(severe bankruptcy), 안정성 부족(lack of stability), 활동성 부족(lack of activity), 수익성 부족(lack of profitability), 회생 가능한 부도(recoverable bankruptcy)는 재무 비율에 따라 유형별로 상이한 특성을 갖는 것을 확인할 수 있었다. 본 연구 결과를 통해 신용 평가 분야의 연구자와 실무자들이 기업의 부도의 유형에 대한 유용한 정보를 얻을 것으로 기대한다.

목차

1. Introduction
2. Related Work
3. Methodology
4. Model Development
5. Results and Analysis
6. Conclusions
References
국문요약

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-003-001985451