메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창성 (세명이앤씨) 지평식 (한국교통대학교)
저널정보
대한전기학회 전기학회논문지 P 전기학회논문지 제64P권 제3호
발행연도
2015.9
수록면
164 - 168 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the uncertainty of weather, it is difficult to construct an accurate forecasting model for daily PV power generation. It is very important work to know PV power in next day to manage power system. In this paper, correlation analysis between weather and power generation was carried out and daily PV power forecasting models based on Extreme Learning Machine(ELM) was presented. Performance of district ELM model was compared with single ELM model. The proposed method has been tested using actual data set measured in 2014.

목차

Abstract
1. 서론
2. ELM을 이용한 태양광발전량 예측 모델
3. 사례연구
4. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0