메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Feyissa Woyano (Korean University of Science and Technology) Aangjoon Park (Korean University of Science and Technology) Soyeon Lee (Electronic and Telecommunication Research Institute(ETRI))
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.6 No.1
발행연도
2017.2
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes to improve the performance of a strap down inertial navigation system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an attitude and heading reference system. To track position accurately and for attitude estimations, considering different dynamic constraints, magnetic measurement and a zero velocity update technique is used. A conventional strap down method based on integrating angular rate to determine attitude will inevitably induce long-term drift, while magnetometers are subject to shortterm orientation errors. To eliminate this accumulative error, and thus, use the navigation system for a long-duration mission, a hybrid configuration by integrating a miniature micro electromechanical system (MEMS)-based attitude and heading detector with the conventional navigation system is proposed in this paper. The attitude and heading detector is composed of three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute algorithm based on gravity and Earth’s magnetic field, rather than an integral algorithm, the attitude detector can obtain an absolute attitude and heading estimation without drift errors, so it can be used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both formula analysis and from test results) that the accumulative errors are effectively eliminated via this hybrid scheme.

목차

Abstract
1. Introduction
2. Related Work
3. Basic Navigation Equation
4. Extended Kalman Filter
5. Performance Evaluation
6. Conclusion
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-002238367