메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제20권 제2호
발행연도
2017.1
수록면
170 - 178 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Biometric recognition is one of the major challenging topics which needs high performance of recognition accuracy. Most of existing methods rely on a single source of biometric to achieve recognition. The recognition accuracy in biometrics is affected by the variability of effects, including illumination and appearance variations. In this paper, we propose a new multimodal biometrics recognition using convolutional neural network. We focus on multimodal biometrics from face and periocular regions. Through experiments, we have demonstrated that facial multimodal biometrics features deep learning framework is helpful for achieving high recognition performance.

목차

ABSTRACT
1. INTRODUCTION
2. BACKGROUND AND RELATED WORK
3. PROPOSED FRAMEWORK OF MULTIMODAL BIOMETRICS RECOGNITION VIACNN
4. EXPERIMENTAL RESULT AND DISCUSSION
5. CONCLUSION
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-002258147