메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문지훈 (고려대학교) 박진웅 (고려대학교) 한상훈 (고려대학교) 황인준 (고려대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.9
발행연도
2017.9
수록면
954 - 965 (12page)
DOI
10.5626/JOK.2017.44.9.954

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
안정적인 전력 공급은 전력 인프라의 유지 보수 및 작동에 매우 중요하며, 이를 위해 정확한 전력 사용량 예측이 요구된다. 대학 캠퍼스는 전력 사용량이 많은 곳이며, 시간과 환경에 따른 전력 사용량 변화폭이 다양하다. 이러한 이유로, 전력계통의 효율적인 운영을 위해서는 전력 사용량을 정확하게 예측할 수 있는 모델이 요구된다. 기존의 시계열 예측 기법은 학습 시점과 예측 시점 간의 차이가 클수록 예측 구간이 넓어짐으로 예측 성능이 크게 떨어진다는 단점이 있다. 본 논문은 이를 보완하려는 방안으로, 먼저 의사결정나무를 이용해 날짜, 요일, 공휴일 여부, 학기 등을 고려하여 시계열 형태가 유사한 전력 데이터를 분류한다. 다음으로 분류된 데이터 셋에 각각의 자기회귀누적이동평균모형을 구성하여, 예측 시점에서 시계열 교차검증을 적용해 대학 캠퍼스의 일간 전력 사용량 예측 기법을 제안한다. 예측의 정확성을 평가하기 위해, 성능 평가 지표를 이용하여 제안한 기법의 타당성을 검증하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 전력 사용량 예측 모델 구성
4. 성능 평가 지표
5. 실험 및 결과
6. 결론 및 향후 연구
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0