메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hadi Mohammadi (Amirkabir University of Technology) Esmaile Khorram (Amirkabir University of Technology)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.18 No.1
발행연도
2019.3
수록면
132 - 142 (11page)
DOI
10.7232/iems.2019.18.1.132

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses the solution of a two-stage stochastic mixed integer programming model for an investment of planning problems applied to the petroleum products supply chain. In this context, we present the development of decomposition techniques for the stochastic Benders decomposition and Lagrangian relaxation methods. The combinational technique of cross decomposition is a suitable one for exact solution of the mixed integer programming problems which uses simultaneously the advantages of Lagrangian relaxation and Benders decomposition methods that each reinforces one another.
The basic idea for this technique is the generation of suitable upper and lower bounds for the optimal value of the original problem at each iteration. In this paper, as far as cross decomposition algorithm is concerned, we present a new hybrid Lagrangian relaxation algorithm for updating the Lagrangian multiplier set, based on the combination of cutting-plane, sub-gradient and trust-region strategies. The convergence of this technique regarding the convergence of Benders decomposition method in finite iteration numbers has been guaranteed.
Results suggest that the proposed approach is able to efficiently solve the problem under consideration, achieving better performance in terms of computational times as compared to other techniques.

목차

ABSTRACT
1. INTRODUCTION
2. BACKGROUND
3. PROBLEM STATEMENT
4. MATHEMATICAL MODEL
5. SOLUTION ALGORITHM
6. ILLUSTRATIVE CASE STUDY
7. CONCLUSION
REFERENCES

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-530-000561264