메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권홍필 (라닉스) 하재철 (호서대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제5호
발행연도
2020.5
수록면
14 - 21 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
두 통신자간 정보를 전송함에 있어 기밀성 서비스를 제공하기 위해서는 하나의 대칭 비밀키를 이용하는 블록데이터 암호화를 수행한다. 데이터 암호 시스템에 대한 전력 분석 공격은 데이터 암호를 위한 디바이스가 구동할 때 발생하는 소비 전력을 측정하여 해당 디바이스에 내장된 비밀키를 찾아내는 부채널 공격 방법 중 하나이다. 본 논문에서는 딥 러닝 기법인 CNN (Convolutional Neural Network) 알고리즘에 기반한 전력 분석 공격을 시도하여 비밀 정보를 복구하는 방법을 제안하였다. 특히, CNN 알고리즘이 이미지 분석에 적합한 기법인 점을 고려하여 1차원의 전력 분석파형을 2차원 데이터로 이미지화하여 처리하는 RP(Recurrence Plots) 신호 처리 기법을 적용하였다. 제안한 CNN 공격 모델을 XMEGA128 실험 보드에 블록 암호인 AES-128 암호 알고리즘을 구현하여 공격을 수행한 결과, 측정한 전력소비 파형을 전처리 과정없이 그대로 학습시킨 결과는 약 22.23%의 정확도로 비밀키를 복구해 냈지만, 전력 파형에 RP기법을 적용했을 경우에는 약 97.93%의 정확도로 키를 찾아낼 수 있었음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 배경 지식
3. AES에 대한 CNN 전력 분석 공격
4. 실험 결과
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0