메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안유선 (연세대학교) 이용준 (비이엘테크놀로지) 오은주 (비이엘테크놀로지) 김병선 (연세대학교)
저널정보
대한설비공학회 설비공학논문집 설비공학논문집 제32권 제8호
발행연도
2020.8
수록면
386 - 397 (12page)
DOI
10.6110/KJACR.2020.32.8.386

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Building energy demand currently accounts for 40% of the total energy demand, which has a great influence on the planning and operation of the energy market by energy suppliers, and its importance has increased significantly with the advent of the smart grid. Variables affecting the use of building energy include the identification of environmental conditions, historical conditions, and schedule conditions, and these factors have a sophisticated effect on buildings. One of the most influential variables is the building schedule. Because each building has its own schedule, standardized schedules cannot be applied to various buildings, and it is difficult for non-experts to analyze or predict schedules in these cases. The aim of this paper is to propose a high-precision building energy demand prediction model by using a Fourier transform-based time series prediction model, that automatically analyzes and predicts the schedule to be applied when predicting building energy demand. In order to compare with the existing method, the six buildings are divided into schedules when they are not scheduled, weekdays/weekends, days of week and when schedule analysis algorithm are applied. Machine learning is performed using the LSTM model, and prediction accuracy is verified through the CvRMSE and MBE. There was an average difference of 15.37% based on the CvRMSE, and all predictions were predictable when the automated prediction model was applied. This study can be used as a building energy operation plan for the creation and implementation of a future energy-efficient smart grid system.

목차

Abstract
1. 연구배경 및 목적
2. 연구방법
3. 예측 기법
4. 평가모델 분석
5. 비교 결과
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0