메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
조인천 (경희대학교) 배성호 (경희대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
553 - 557 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 이미지 분류의 성능 향상을 위해 깊은 레이어와 넓은 채널을 가지는 모델들이 제안되어져 왔다. 높은 분류정확도를 보이는 모델을 제안하는 것은 과한 컴퓨팅 파워와 계산시간을 요구한다. 본 논문에서는 이미지 분류기법에서 사용되는 딥 뉴럴 네트워크 모델에 있어, 프루닝 방법을 통해 상대적으로 불필요한 가중치를 제거함과 동시에 분류 정확도 하락을 최소로 하는 동적 필터 프루닝 방법을 제시한다. 원샷 프루닝 기법, 정적 필터 프루닝 기법과 다르게 제거된 가중치에 대해서 소생 기회를 제공함으로써 더 좋은 성능을 보인다. 또한, 재학습이 필요하지 않기 때문에 빠른 계산 속도와 적은 컴퓨팅 파워를 보장한다. ResNet20 에서 CIFAR10 데이터셋에 대하여 실험한 결과 약 50%의 압축률에도 88.74%의 분류 정확도를 보였다.

목차

요약
1. 서론
2. 관련 연구
3. 동적 필터 프루닝
4. 실험 결과
5. 결론
6. 추후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001083436