메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jieun Kim (Korea National University of Education) Byungmin Lee (Seoul National University)
저널정보
한국응용언어학회 응용언어학 응용언어학 제36권 제3호
발행연도
2020.9
수록면
31 - 53 (23page)
DOI
10.17154/kjal.2020.9.36.3.31

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Prior knowledge has been proven to be a very influential factor in the reading comprehension of expository texts. Among diverse domains of expository texts, the significant role of prior knowledge in the L1 reading comprehension of science texts has been reported. To examine the role of prior topic knowledge in the L2 reading comprehension of expository texts, 77 Korean high school students read two types of expository texts: two science texts (i.e., chemistry and physics) and two non-science texts (i.e., music and history). We also measured the students’ prior topic knowledge, English proficiency, and reading comprehension to investigate the interaction between prior topic knowledge and English proficiency. According to our multiple regression analyses, both science topic knowledge (β = .48) and English proficiency (β = .43) were significant predictors of reading comprehension in the case of science texts. Additionally, science topic knowledge (β = .53) was a stronger predictor of reading comprehension for the situation model questions that intend for the higher level of comprehension than for the textbase questions that intend for the propositional level of comprehension (β = .36) when reading science texts. In the case of the non-science texts, music and history topic knowledge was not a significant predictor because the readers had generally low prior topic knowledge. The reading comprehension of non-science texts was dominantly explained by English proficiency. Interestingly, science topic knowledge was a significant predictor of reading comprehension of the non-science texts in the case of textbase questions, but not situation model questions.

목차

Ⅰ. INTRODUCTION
Ⅱ. LITERATURE REVIEW
Ⅲ. METHODOLOGY
Ⅳ. RESULTS
Ⅴ. DISCUSSION
Ⅵ. CONCLUSION
REFERENCES

참고문헌 (57)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0