메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
심이삭 (한동대학교) 임주형 (한동대학교) 장영완 (한동대학교) 유지환 (한동대학교) 오선택 (한동대학교) 김영근 (한동대학교)
저널정보
한국자동차공학회 한국자동차공학회논문집 한국자동차공학회논문집 제29권 제10호
발행연도
2021.10
수록면
959 - 966 (8page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The latest CNN-based object detection models are quite accurate, but they require a high-performance GPU to run in real-time. For an embedded system with limited memory space, they are still are heavy in terms of memory size and speed. Since the object detection for autonomous system is run on an embedded processor, it is preferable to compress the detection network as light as possible while preserving detection accuracy. There are several popular lightweight detection models; however, their accuracy is too low for safe driving applications. Therefore, this paper proposes YOffleNet, a new object detection model that is compressed at a high ratio while minimizing the accuracy loss for real-time and safe driving application on an autonomous system. The backbone network architecture is based on YOLOv4, but we could significantly compress the network by replacing the high-calculation-load CSP DenseNet with the lighter modules of ShuffleNet. Experiments with KITTI dataset showed that the proposed YOffleNet is compressed by 4.7 times than the YOLOv4-s that could achieve as fast as 32 FPS on an embedded GPU system(NVIDIA Jetson AGX Xavier). When compared to the high compression ratio, the accuracy is reduced slightly to 85.8 % mAP, which is only 3.6 % lower than YOLOv4-s. As a result, the proposed network showed a high potential for deployment on the embedded system of the autonomous system for real-time and accurate object detection applications.

목차

Abstract
1. 서론
2. 관련 연구
3. 객체탐지 경량화 알고리즘 설계
4. 실험 및 검증
5. 결론
References

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0