메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Michael Dalvean (Canberra College) Galbadrakh Enkhbayar (Southern Taiwan University of Science and Technology)
저널정보
경희대학교 언어정보연구소 언어연구 언어연구 제35권
발행연도
2018.1
수록면
137 - 170 (34page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This means that the validity of the measures when applied to fiction texts is questionable. Thus, the scores given to fiction texts using such indices may be invalid when used by English teachers to identify fiction texts of appropriate difficulty for students with various reading ability levels. This paper attempts to address this problem by 1) developing a readability measure specifically designed for fiction texts and 2) applying it to 200 English fiction texts. A corpus, consisting of 100 adults' and 100 children's texts, is used for the analysis. In the initial modeling, several standard readability measures are used as variables, and machine learning is used to create a classifier which is able to classify the corpus with an accuracy of 84%. A second classifier is then created using linguistic variables rather than standard readability measures. The latter classifier is able to classify the corpus with an accuracy of 89%, indicating that the standard readability measures are less accurate in classifying fiction texts than linguistic variables. Due to its higher accuracy, the latter classifier is then used to provide a linear complexity or 'readability' rank for each text. The ranking using the linguistic-based classifier provides an more accurate method of determining which texts to choose for students according to their reading levels than the standard readability measures. Importantly, the ranking instantiates a fine-grained increase in complexity. This means that the ranking can be used by an English teacher to select a sequence of texts that represent an increasing challenge to a student without there being a frustratingly discrete rise in difficulty.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0