메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mehrotra, Abhishek (Ajou University) Choi, Hyuong-In (Ajou University) Yi, Hwang (Ajou University)
저널정보
대한건축학회 대한건축학회 학술발표대회 논문집 대한건축학회 2022년도 춘계학술발표대회논문집 제42권 제1호(통권 제77집)
발행연도
2022.4
수록면
201 - 204 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Additive manufacturing (AM) or 3D printing is a subject of active building research and practice. Nevertheless, high-quality 3D printing is challenging, because it requires a lot of experience and knowledge on fine tuning of various printing parameters, such as the rate of material flow, head speed, layer height, shape and size of the extrusion nozzle, etc. Therefore, this study addresses prediction of the optimal parameter combination and the quality of AM objects before 3D printing. Assuming that the quality of material deposition can be identified by the constant connection between paths (lines) on a layer, we employed artificial intelligence (AI) to predict the path connection quality in actual printing process. To this end, four different machine learning (ML) models, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Random Forest (RF), and Deep neural network (DNN) were trained and tested. Using a KUKA robot arm, 400 printing experiments (280 for ML training and 120 for testing) were conducted to collect a dataset of the control parameters and corresponding connection status. The results show that ML models produce different prediction output of accuracy, precision, recall, and performance score. Our findings suggest that RF and DNN are among the most accurate models to find the best 3d printing outcome. This study contributes to expanding the AM knowledge about parameter adjustment and printing process.

목차

Abstract
1. Introduction
2. Related studies
3. Methodology
4. Results and discussion
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0