메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
손상훈 (부경대학교) 김진수 (부경대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제6호
발행연도
2021.12
수록면
1,881 - 1,890 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
미세먼지는 인체에는 물론 생태계, 날씨 등에도 많은 영향을 끼치며, 인구와 건물, 차량 등이 밀집된 대도시에서의 미세먼지의 예측과 모니터링은 중요하다. 특히 자동차, 연소 등에서 발생하는 PM2.5 농도는 독성 물질을 포함할 수 있어 체계적인 관리가 필요하다. 따라서 본 연구는 화학 인자, 위성 기반의 aerosol optical depth (AOD), 기상 인자 등을 입력 자료로 하여 수도권PM2.5 농도를 예측하고자 한다. PM2.5 농도 예측을 위해 기계 학습 모델 중 PM 농도 예측에 우수한 성능을 보이는 random forest (RF) 모델을 선정하였으며, 모델 평가를 위해 통계 지표인 R2, RMSE, MAE, MAPE를 산출하였다. RF 모델의 모델 정확도는 R2, RMSE, MAE, MAPE는 각각 0.97, 3.09, 2.18, 13.31로 나타났으며, 예측 정확도는 각각 0.82, 6.03, 4.36, 25.79로 본 연구에서 사용한 인자들을 이용하여 PM2.5를 예측 시 높은 정확도와 상관성을 나타내었다. 따라서 향후 학교 미세먼지 예측 및 범주화를 위해 본연구에서 사용한 인자들을 RF 모델에 적용하였을 때 신뢰할만한 결과를 도출할 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0