메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제28권 제3호
발행연도
2015.6
수록면
429 - 442 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
변동성(volatility)은 투자위험을 의미하며 자산의 가격결정이나 포트폴리오 관리 및 투자전략에서 아주 중요한 역할을 한다. 이러한 변동성을 모형화하기 위한 조건부 이분산 모형으로서 전통적인 GARCH(generalized autoregressive conditional heteroskedastic) 모형 및 확장된 형태들이 널리 사용되어지고 있으나, 금융위기와 재정위기와 같은 구조적 변화를 변동성 예측에 반영할 수 없다는 단점을 가지고 있다. 본 논문에서는 이를 극복하기 위한 모형으로서 국면전환 GARCH(Markov regime switching GARCH) 모형을 소개하고, 한국의 일별 KOSPI 수익률에 적용하여 변동성 분석 및 예측을 실시하고, 기존의 GARCH 모형들과 비교하여 그 성능을 평가한다. 그 결과 표본내(in-sample)의 변동성 적합도 측면에서 국면전환 GARCH 모형이 가장 우수한 성능을 보였으며, 표본 외(out-ofsample) 예측력 측면에서는 국면전환 GARCH 모형이 단기적 예측에서 좋지 않은 성능을 보였으나 장기적 예측에서 우수함을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001579369