메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
성수진 (인천대학교) 박재현 (건국대학교)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 2024 대한인간공학회 추계학술대회
발행연도
2024.11
수록면
122 - 125 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: This study aims to measure motion sickness in dynamic VR environments using a polynomial regression model based on electrodermal activity (EDA) and to evaluate the impact of data extraction timing. Background: Establishing a consistent methodology for analyzing the factors contributing to discomfort is essential for effectively assessing and mitigating VR motion sickness. Method: Twenty participants engaged in a VR game while data were collected using EDA sensors and subjective questionnaires. The entire experiment lasted for 10 minutes, divided into rest and game sections, and three different cases of modeling were designed for each interval. A total of 15 independent variables and 8 dependent variables were extracted, with a stepwise method employed to identify significant variables. Results: The findings revealed that the FMS variable exhibited the best performance during the first rest section. Both the SSQ and VRSQ showed high performance across all variables during the 6-minute section of the first game, with total of VRSQ achieving the highest adjusted R² of 0.919. Conclusion: This study developed a motion sickness tracking model based on data extraction timing while users were immersed in the VR environment. The findings suggest that utilizing EDA signals is particularly effective for tracking motion sickness when users are most engaged. Therefore, it is crucial to consider data extraction timing and specific symptoms when constructing models for measuring motion sickness using physiological signals in dynamic virtual environments. Application: The model cannot definitively diagnose the presence of motion sickness, it can serve as an auxiliary tool for assessing the likelihood and severity of motion sickness.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0