메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김한진 (충남대학교) 김혁진 (충남대학교) 제준호 (충남대학교) 김경섭 (충남대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제23권 제10호
발행연도
2019.10
수록면
1,275 - 1,281 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
무선 신호의 자동 변조 인식은 지능형 수신기의 주요한 작업으로 다양한 민간 및 군대 응용분야가 있다. 본 논문에서는 딥 뉴럴 네트워크 모델을 기반한 무선통신에서 전파신호의 변조 방식을 식별하는 방법을 제안한다. 순차적인 데이터에 대해 장기적인 패턴을 잡아내는데 용이한 LSTM 모델을 통과하여 얻은 연속적인 신호의 특징값을 딥 뉴럴 네트워크의 입력 데이터로 사용하여 신호의 변조 패턴을 분류한다. 변조된 신호의 진폭 및 위상, 동상(In-phase) 반송파, 직각 위상(Quadrature-phase) 반송파의 값을 LSTM 모델의 입력 데이터로 사용하여 분류한다. 제안된 학습 방법의 성능을 검증하기 위해, 다양한 신호 대 잡음비로 10 가지 유형의 변조 신호를 포함하는 대형 데이터 세트를 사용하여 학습하고 테스트한다. 본 논문의 변조 인식 프로그램은 신호의 사전 정보가 없는 환경에서 변조방식을 예측하는 데 적용될 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 변조인식 시스템
Ⅲ. 시스템 설계
Ⅳ. 실험 결과
Ⅴ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-001288874