메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장정익 (Gachon University) 최재혁 (Gachon University) 윤영일 (LIG Nexone)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제4호
발행연도
2022.12
수록면
45 - 53 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
무선 신호 인식 및 자동 변조 분류(Automatic Modulation Classification) 기술은 넓은 주파수 대역에서 다양한 무선 통신 서비스를 단일 단말에서 유연하게 이용 가능한 SDR(Software Defined Radio) 플랫폼의 핵심 요소 기술로 필요성이 높아지고 있다. 최근에는 데이터 학습 기반의 딥러닝 기술을 기반으로 정확도가 향상된 여러 가지 자동 변조 분류 모델들이 제안되고 있다. 하지만, 대부분의 연구는 모델에 입력되는 무선 신호의 길이가 고정된 경우에 초점을 맞추고 길이가 가변적인 시나리오를 고려하지 않고 있다. 본 연구에서는 SDR의 개방형 플랫폼의 요소 기술로써 임의의 무선 신호의 길이에 대해 변조 분류가 가능한 방법을 제안한다. 이를 위해, 두 가지 입력 크기에 대해 학습된 Convolutional Neural Network(CNN) 기반의 주 모델(main model)과 하위 모델(small model)로 분류 시스템을 설계하고, 나머지 구간의 길이로 수신된 신호에 대해서는 자기 복제 패딩 기법으로 입력 샘플을 증강시켜 변조 분류를 수행한다. 분류 성능 정확도 및 계산 복잡도의 비교분석을 위한 RadioML 2018.01A 데이터셋을 사용한 실험을 통해 제안하는 기법이 모든 신호 대 잡음비(Signal-to-Noise Ratio, SNR) 영역에서 기존 방식보다 높은 정확도를 제공하면서도 낮은 연산량을 필요함을 보였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 제안 시스템
Ⅲ. 실험 및 평가
Ⅳ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000303397