메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강종진 (한화시스템) 김재현 (아주대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제3호
발행연도
2021.3
수록면
427 - 432 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 미상의 통신신호에 대한 자동 변조 인식을 위하여 심층신경망인 딥뉴럴네트워크를 적용하여 변조형태를 식별하고 그 성능을 분석하였다. 신경망 입력 데이터는 변조된 신호의 시간영역 디지털샘플 데이터, FFT(Fast Fourier Transform)를 적용한 주파수영역 데이터, 시간 및 주파수영역 혼합데이터를 사용하여 각각의 변조인식 성능을 확인하였다. 아날로그 변조 및 디지털 변조 신호 11종에 대하여 –20~18 ㏈ 까지 다양한 SNR(Signal to Noise Ratio) 환경에서 변조인식 성능을 확인하고 그 성능을 분석하였으며, 입력 데이터의 종류에 따른 학습 속도를 확인함으로써 제안한 방법이 실제적인 자동변조 인식 시스템 구축에 효과적인 방법임을 확인 하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 자동 변조 인식 시스템 설계
Ⅲ. 모의실험 및 분석
Ⅳ. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0