메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강수정 (숙명여자대학교)
저널정보
한국번역학회 번역학연구 번역학연구 제22권 제3호
발행연도
2021.9
수록면
41 - 63 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigated the usage status of artificial neural machine translation (NMT) including Google Translation and Papago among students at Graduate School of Interpretation and Translation. Their usage status of NMT is an important variable to predict the status and role of NMT in future markets.
A total of 208 respondents participated in the survey, and 182 people used machine translation for interpretation and translation learning. The results showed that respondents said that machine translation helped them to understand vocabulary, expressions, and the overall context of and a rough understanding of sentences, and said that the use of machine translation helps to improve their translation skills. In addition, although they fully intended regular use of NMT they had unfavorable opinions about machine translation. This leads to the interpretation that despite they recognized the value of machine translation, they remained skeptical towards machine translation from the point of view of a translations expert.
The differences in opinions towards NMT depending on the user groups were investigated. Yet there was no difference in perception of the types of translation apps they used or the language in which they concentrated. However, the longer their use of machine translation, the more favorable their evaluation towards that.
The results of this study have important implications for interpretation and translation education in that it presents a future direction of interpretation and translation education for interpretation/translation educators and educational institutions.

목차

1. 서론
2. 선행연구 분석
3. 연구 방법
4. 분석 결과
5. 논의 및 결론
참고문헌
[Abstract]

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0