메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Eui Young Seo (Korea Mine Rehabilitation and Mineral Resources Corporation) Sunghyun Bae (Keimyung University) Gwan In Bak (Korea Mine Rehabilitation and Mineral Resources Corporation) Sang-hun Lee (Keimyung University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.40 No.2
발행연도
2021.11
수록면
109 - 114 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Monitoring particulate matter (PM) in mine sites is challenging owing to the intermittent PM emission and dispersion over widespread areas at these locations. In these circumstances, multiple monitoring stations, including PM sensors, should be installed to monitor PM distributions throughout the site. However, this may result in high operation costs. Monitoring based on low-cost PM sensors is advantageous with respect to cost, though its poor data quality is problematic. Yet, big data processing techniques can be utilized to remedy this drawback. This study proposed a strategic solution to enhance the data reliability of low-cost PM monitoring through big data processing. The significance of an effective calibration was emphasized to overcome the poor quality of low-cost PM sensor data. In particular, this study focused on the usefulness of blind calibration for adjustment of background PM levels and the traditional linear regression-based calibration through direct comparison between low-cost and reference sensor data. The applicability of an ANN (Artificial Neural Network) algorithm was also considered for automatic decision making and implementation of the whole calibration, as well as for global optimization in nonlinear regression coefficients with a high complexity.

목차

ABSTRACT
1. Introduction
2. PM Monitoring Procedures
3. Big Data Processing Strategy
4. Conclusions
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-047-000055671