메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Vitor H. Isume (Osaka University) Kensuke Harada (Osaka University) Weiwei Wan (Osaka University) Yukiyasu Domae (National Institute of Advanced Industrial Science and Technology (AIST))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
2,010 - 2,014 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
When crafting a homemade object, such as in DIY (do-it-yourself) projects, a human is able to, from a goal object in mind, assemble a craft with the available objects in the scene without having a set of instructions. Taking inspiration from this, we propose a robotic system capable of performing such task, that we define as a Craft Assembly Task. In this paper, we show the preliminary version of our proposed system, focusing on the first step, where it needs to choose, from the available objects, which ones should be used as the components of a given assembly. The possible candidates are evaluated based on the visual likeness, using shape matching and dimensions comparison as the main criteria, and on functionality, using affordance matching. The desired final assembly is given as an input to the system in a 3D CAD model, from which the system extracts the shape, dimension and affordance labels from each component, then using a framework of neural networks, it detects the available objects in the scene and evaluate their affordances. After finding candidates with the corresponding affordances, their point clouds are used to evaluate their shapes and dimensions by using a RANSAC algorithm.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORK
3. CRAFT ASSEMBLY TASK
4. METHOD
5. RESULTS
6. DISCUSSION AND FUTUREWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0