메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정재 (숭실대학교) 나현식 (숭실대학교) 옥도민 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제2호
발행연도
2023.4
수록면
201 - 210 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기반 얼굴 인증 모델은 높은 성능을 보이며 많은 분야에 이용되지만, 얼굴 이미지를 모델에 입력하는 과정에서 사용자의 얼굴 이미지가 유출될 가능성이 존재한다. 얼굴 이미지의 노출을 최소화하기 위한 방법으로 비식별화 기술이 존재하지만, 얼굴 인증이라는 특수한 상황에서 기존 기술을 적용할 때에는 인증 성능이 감소하는 문제점이 있다. 본 논문에서는 원본 얼굴 이미지에 다른 인물의 얼굴 특성을 결합한 뒤, StyleGAN을 통해 비식별화 얼굴 이미지를 생성한다. 또한, HopSkipJumpAttack을 활용해 얼굴 인증 모델에 맞춰 특징들의 결합 비율을 최적화하는 방법을 제안한다. 우리는 제안 방법을 통해 생성된 이미지들을 시각화하여 사용자 얼굴의 비식별화 성능을 확인하고, 실험을 통해 얼굴 인증 모델에 대한 인증 성능을 유지할 수 있음을 평가한다. 즉, 제안 방법을 통해 생성된 비식별화 이미지를 사용하여 얼굴 인증을 할 수 있으며, 동시에 얼굴 개인정보 유출을 방지할 수 있다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 배경 지식
IV. 제안 방법
V. 실험
VI. 고찰
VII. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0