메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Thanyawan Chanpanit (King Mongkut’s University of Technology Thonburi (KMUTT)) Apinanthana Udomsakdigool (King Mongkut’s University of Technology Thonburi (KMUTT))
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.2
발행연도
2021.6
수록면
96 - 108 (13page)
DOI
10.7232/iems.2021.20.2.96

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An accurate forecasting model for call center operations allows a company to optimize the number of staffs needed. However, when a special event is planned, the call volume and pattern during that event can be expected to be different from those reflected in the historical database, and consequently, the accuracy of current forecasting methods may degenerate. Thus, a framework that can help to provide a highly accurate forecasting model in such situations is needed. In this paper, a conceptual framework for forecasting incoming calls during mobile expo events is proposed. The framework comprises four main steps: defining data types, verifying time series forecasting methods based on the defined data types, defining the forecasting model and forecasting the incoming calls. This approach can assist in systematically selecting an appropriate forecasting model when a mobile expo event is arranged. Experimental results show that this framework helps to select the appropriate forecasting model for each mobile expo event organized over one year. For the first and third mobile expo event periods, a mixed-period model with an individual forecasting approach, provides the best result, whereas in the second period, a combined forecasting approach for nonevent and mobile expo event periods, is the most appropriate.

목차

ABSTRACT
1. INTRODUCTION AND LITERATURE REVIEW
2. CASE STUDY
3. FRAMEWORK AND METHODOLOGY
4. TIME SERIES FORECASTING METHODS
5. EMPIRICAL EVALUATION
6. CONCLUSIONS
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0