메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김호연 (하나비전테크) 송영기 (한국기술교육대학교) 조재수 (한국기술교육대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제27권 제7호
발행연도
2021.7
수록면
482 - 489 (8page)
DOI
10.5302/J.ICROS.2021.21.0011

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we developed an AI deep learning-based fighting behavior recognition method for a video surveillance system and proved its effectiveness through various experiments. The proposed method consists of a two-step fighting behavior recognition framework. First, continuous video frames of the target surveillance video are transmitted to the Inflated 3D ConvNet (I3D) network, which shows a good behavior-recognition performance, to extract the spatiotemporal features. These extracted 3D features are then used as the inputs in the next step, where a fight situation is detected using a classification model consisting of a fully connected layer. To use the proposed aggressive behavior detection framework effectively, first, it is necessary to train the fight detection model. However, it is not possible to collect sufficient fighting videos in various outdoor environments. To overcome this limitation, we generated a large amount of learning data through data augmentation. Therefore, instead of directly learning from the training videos transmitted to the I3D network, the classifier trains itself to recognize various fighting actions using the Kinetics video dataset. That is, the action features are extracted from the transmitted consecutive frames using the pretrained I3D network and subsequently used to train the fully connected layer classification model. In addition, we proposed a learning method that includes recognizing ambiguous conflict boundaries using multiple instance learning to mitigate the ambiguous starting and ending of the contention videos. The effectiveness of the proposed method was verified through several experiments by drawing comparisons between the present results and those of the previously reported studies.

목차

Abstract
I. 서론
II. 제안하는 싸움(다툼) 행동인식 방법
III. 실험환경 및 실험결과
IV. 결론 및 추후 과제
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-003-001844825