메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
하상집 (국민대학교) 이은주 (국민대학교) 유인진 (국민대학교) 박도형 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제28권 제1호
발행연도
2022.3
수록면
243 - 262 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구는 소셜로봇 디자인 연구의 흐름 중 하나인 로봇의 외형에 관하여 시선 추적(Eye Tracking)을 활용하여 로봇에 대한 사용자의 태도를 형성하는 메커니즘을 발견하고, 로봇 디자인 시 참고할 수 있는 구체적인 인사이트를 발굴하고자 하였다. 소셜로봇의 몸 전체, 얼굴, 눈, 입술 등을 관심 영역(Area of Interest: AOI)으로 설정하여 측정된 사용자의 시선 추적 지표와 디자인평가 설문을 통하여 파악된 사용자의 태도를 연결하여 소셜로봇 디자인의 연구 모형을 구성하였다. 구체적으로 본 연구에서 사용된 시선 추적 지표는 고정된 시간(Fixation), 첫 응시 시간(First Visit), 전체 머문 시간(Total Viewed), 그리고 재방문 횟수(Revisits)이며, 관심 영역인 AOI(Areas of Interests)는 소셜로봇의 얼굴, 눈, 입술, 그리고 몸체로 설계하였다. 그리고 디자인평가 설문을 통하여 소셜로봇의 감정 표현(Expressive), 인간다움(Human-like), 얼굴 두각성(Face-highlighted) 등의 소비자 신념을 수집하였고, 종속변수로 로봇에 대한 태도를 설정하였다. 시선 반응에 따른 소셜로봇에 대한 태도를 형성하는 과정에서 두가지 경로를 통해 영향을 미치는 것을 확인되었다. 첫번째는 시선이 태도에 직접적으로 미치는 영향으로 소셜로봇의 얼굴과 눈의 응시에 따라 긍정적인 태도 인 것으로 나타났다. 구체적으로, 로봇의 첫 응시 시점이 이를수록 눈에서는 머문 시간이 길고 재방문 빈도가 낮을수록 로봇에 대한 태도를 긍정적으로 평가하였다. 즉 소셜로봇을 얼굴보다 눈에 집중해서 보게 될 때 피험자들이 로봇에 대한 판단에 있어 직접적으로 영향을 주는 것으로 나타났다. 두번째로는 로봇에 대한 인지적 지각된 측면을 고려하여 얼굴 두각성(Face-highlighted), 의인화(Human-like), 감정 표현(Expressive)이 태도에 미치는 영향의 결과로 모두 긍정적인 영향을 미치는 것으로 나타났다. 또한 소셜로봇에 대한 지각이 구체적으로 로봇의 어떤 외형적 요소가 연관성을 가지는지 살펴본 결과 소셜로봇의 얼굴과 입술에 머문 시간이 길수록 입술을 다시 주시하지 않을수록 Face-highlighted에 긍정적인 영향을 주는 것으로 나타났다. 그리고 전신은 첫 응시가 늦을수록, 입술은 첫 응시가 빠르고 시선이 고정된 시간이 짧을수록 Human-like에 긍정적인 영향이 미치는 것으로 나타났다. 마지막으로 소셜로봇의 얼굴에 머문 시간은 길수록 Expressive에 긍정적인 영향이 미치는 것으로 나타났다.

목차

1. 서론
2. 이론적 배경
3. 연구 설계 및 방법
4. 연구 결과
5. 결론
참고문헌(References)
Abstract

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-003-001155667